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I. INTRODUCTION

The Global Precipitation Measurement (GPM) core satellite carries the first spaceborne dual-frequency
precipitation radar (DPR) at Ka (35 GHz) and Ku (13 GHz) frequencies and a 13-channel passive microwave
imager (GMI). One of the advancements is that it quantitatively estimates the precipitation particle size
distributions. The estimated size parameter, mass-weighted mean diameter, Dm, offers new physical insights
into micre ical properties of precipitation around the globe.

Dn is retrieved with two sets of algorithms. One is based on the DPR observations only, the other one uses
observations from DPR and GMI, called the combined (CMB) product. We compare Dm in level-2 (swath data)
and level-3 (gridded) products of both algorithms. In this study, 5 years of data are examined to investigate
the structure of individual storms and global patterns of Dm at different vertical levels. The characteristics of
Dn in stratiform vs. convective precipitation, the seasonal and zonal variations of Dm are also investigated.
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IV. DPR Dm Occurrence and
CONVECTIVE FRACTION

Fig. 4: DPR Dm probability
(left) and DPR convective
fraction (right)

The fraction of convective
precipitation is calculated to
help us understand the
characteristics of Dm shown in
the previous figures. Generally,
the detection of a bright band
determines stratiform rain.
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« Over the ocean, subtropics have
high convective fraction. Eastern
oceans may correspond to warm
rain with no bright band.
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VII. SEASONAL VARIATIONS AND ZONAL MEAN D,
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« Distinct seasonal
variation of Dm in the cold
Vs. warm seasons,
especially over land.

* CMB has similar pattern
as DPR

* NH winter, contrasts
between oceanic storm
tracks vs Eurasian and NA
land are distinct in DPR,
but not in CMB.
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« Convective precipitation has
larger Dm than stratiform
precipitation at all levels.
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Fig. 10: Zonal mean Dm (2014-2018) at different altitudes for
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